This much I have learned – How to ask for funding for your research.

Acquiring your own independent line of research funding is key to the beginning of an academic career, whether you will pursue fellowships, the tenure track, or something else. Having your own research funding shows that you can lead a project, and that you have good, big ideas.

But funding applications are very different from probably anything you’ve written before, and for most Early Career Researchers (ECRs), there is a steep learning curve while we figure out how to write successful ones. For many, myself included, this means a lot of rejections before the first award of funding. Learning to deal with that rejection is not the topic of discussion here. Instead, I want to talk about moving on from a failed proposal so you can write a better one next time. After some recent successes I’m very happy and excited about, I will here try to summarise how I changed my approach in writing funding applications, and the specific lessons I took from some spectacular early failures. Some of these tips may be more specific to the Swedish context in which I am working, but I hope that they are universal enough that most ECR readers can take some inspiration from this list.

In Sweden, the two major research councils offer early career “starter” grants that fund 3-4 year projects. Anyone working in a university who obtained their PhD 2-7 years ago is eligible to apply for funding. If you are an Assistant Professor receiving salary support from your school, this funding should allow you to recruit a post-doc. If, like me, you are a non-faculty Researcher, it will just about let you pay your own salary, granting you financial independence from your supervisor and giving you breathing room to apply for additional funding to recruit personnel whom you will supervise.

Lesson 1 – You have to actually try

I started applying for independent funding a few years after most of my lab-mates who are at the same career age as me (yes they are men how did you know). In the beginning, I didn’t think I was ready to stand on my own. I didn’t think my ideas were very interesting or impressive. I didn’t think I had a large enough network of contacts to propose collaborative work to anyone. I didn’t think my CV was strong enough, or that I had published enough papers, or that my papers had been cited enough, or that anyone on the reviewing panel would recognise my name. I probably waited 3 years longer than I really needed to before I gained the confidence to start applying for funds, and looking back at this of nervousness, I’m really annoyed at my former self for all of that wasted time.

Unless you are very lucky*, your first few funding applications probably will be rejected. But, depending on the type of application, you should get some feedback as to the major problems with your proposal. If you don’t get comments from the panel, I recommend showing an unsuccessful funding application to a trusted colleague who has had more success. It is never a fun experience being told everything that is wrong with your proposal, but you must learn to take those criticisms in a constructive way. Use the feedback to write a better proposal for the next relevant funding call that comes around. If you don’t try that first time, you won’t get to make your much-improved second or third attempt! And if you don’t take the criticism on board, then your chances of success won’t increase over time.

*Luck in this context can come in many forms. For example, it helps to have published in a very high impact journal (and we can debate the logic and merits of that fact another day), but if you are an ECR, and if you’re honest with yourself, it’s likely that your Nature or Science paper was accepted on the strength of your boss’s name. Or that it was a result of a large collaborative effort directed by well-known academics you were lucky enough to work under. It also helps if your current supervisor or mentor is a big name in their field (see Lesson 3 below). You can also be lucky in the case that someone on the reviewing panel sees promise in your early work and decides to fight for you – but you will never know if this happened, so don’t count on it.

Lesson 2 – Stand on your own, as part of a community

If you are the main or sole applicant, then it needs to be very clear that you are the driving force behind the project, in terms of the creative thinking, the analytical work (data evaluation and drawing conclusions), and the recruitment of staff or students. You need to explain how you yourself will take charge of dissemination and outreach, to make sure you reach all of your impact goals (see Tips #4 and #5 in the list at the bottom of this, erm, list.) You need to show how your new work will step beyond and away from what you have done with your supervisors so far, so it is clear that your new project is genuinely yours – but you should also show that you will make a valuable contribution to a broader research community.

I always include a statement describing how my new project will fit the broad goals of my Division at KTH, how it will contribute to the sustainability initiatives of my University, and how it will feed into the educational programmes at my School. You want to show that you can work with international collaborators and have a global mindset, so talk about attending major conferences in your field, and networking across continents where possible. But you also belong to a local community of scientific researchers and educators, and the work you are proposing is for them, as well as you. It is possible to write some very powerful impact statements about how the research you propose will integrate into education at your university. For example, I involve under- and post-grad students in my research programmes when they work on their thesis projects with me. I also include examples from my own research in lectures I give on enzyme discovery and carbohydrate technology.

Lesson 3 – Invite impressive co-applicants from a variety of disciplines

I believe that ECRs can afford to be somewhat cynical when it comes to inviting co-applicants with big names, as the odds are against us, and it makes a huge difference to the likely success of a proposal to have a co-applicant who is more recognisable to the panel than you are yourself. This is NOT to say that you should invite any random famous scientist who is remotely connected to your field. But if you have a senior colleague or collaborator who could offer solid and relevant advice as you work on the project, invite them to be a co-applicant. Discuss with them in detail so that they know whether or not they should expect to be co-authors on papers. If their role will be advisory, discuss it with them, and make it clear in the application.

Lesson 4 – Include preliminary data

This was not obvious to me when I started out. Since I was specifically applying for funding to initiate a new project, I didn’t include any data in my first proposals. I discussed previous work I had done that used similar techniques, to show I could perform the proposed experiments, but I didn’t provide any new (unpublished) data.

I suspect that this may be a sticking point for a lot of ECRs, who are working as post-docs on someone else’s projects, and therefore don’t have time to work on experiments in support of their own proposals. As early as possible, you should discuss with your current supervisor about your eventual desire to apply for your own financial support. My second post-doc supervisor was generous in that he let me pursue projects in addition to the work he assigned to me, and this is what led to my eventual funding success, as I included data I had generated over several years in my “starter” grant applications.

Lesson 5 – Use a personal writing style

I noticed a drastic change in my proposal success rate when, in what I admit was a fit of frustration and pettiness, I decided on the spur of a moment to fundamentally change the tone of language I was using in my proposals. I now use a very personal writing style, referring explicitly to myself, my skills, and my achievements at several points in proposals. Example sentence: “The work I propose will greatly advance my research towards commercialisation of my biomaterial formation process, by achieving the following goals.

I also include discussions of my own career advancement in the “outcomes” section of all proposals. I believe that, since I am asking the research councils to invest in me, they should know a bit about me, and what I want to do long term. This is I think especially effective in “early career”/”future leader”-type applications, where the main successful outcome of the project will be that you have a job.

My final list of tips that might improve your chances of obtaining research funding

  1. Already have some funding (sorry, but this seems to be the biggest boon to any CV. Not having any prior awards makes research councils wary of granting you an award. So frustrating!! Start by applying for small grants from small foundations. My first win was a ~€10k foundation award to pay for gene synthesis; I later used the characterisation of those genes as preliminary data to support my first successful proper project grant.)
  2. Invite some impressive (but appropriate) co-applicants who are well-funded and well-known in your country as well as internationally. Involve different disciplines (humanities!!) wherever possible and appropriate. I have a co-applicant on a current project who is an Industrial Ecologist and life cycle expert, and the panel’s feedback confirmed that his expertise made a huge difference to our proposal.
  3. (Possibly most relevant in Sweden, where innovation and application are very important.) Have a specific product or application in mind. Present an actual business case if you can. At my university, we have an innovation office that can help with these things, undertaking market research and exploring patent space for researchers, among other services.
  4. (Again, vital in Sweden in particular, but hopefully important everywhere by now.) Take sustainability and community outreach seriously – they’re more than just buzzwords, they should be the ultimate end goal and purpose of all of your work. This is especially important if you are applying for funds that derive from taxpayers money – if your work has no societal benefit whatsoever, it should not be funded from the public purse. If your work has purely commercial goals, look for financial support from industry or private foundations instead.
  5. Know how the funder defines and measures impact and output. Mention all of the papers you expect to publish, the popular science press you intend to engage with, the patents you will apply for, the collaborations you will initiate, the conferences you will attend, etc. But also mention all of the students at Bachelor’s and Master’s level who you will supervise as they work on small parts of this new project. Think about how you might integrate your new research findings into lectures or seminars you give to students at your university – the next generation of ECRs, perhaps.
  6. Keep trying, and be ambitious – writing the “big” applications is amazing practice. I applied for an ERC Starter Grant and failed massively. But I worked on the application, submitted to the Swedish Research Council the following spring, and was awarded the Starter Grant that, well, started my independence!

How my research is funded.

Here you can read about the different sources of funding that support my research at KTH Glycoscience, including the goals and timelines of each funded project. The paragraphs below are taken directly from my successful funding applications, and lay out my plans for each research project. Check my academic publication record to see how each project is actually going!!

A new sustainable route to polysaccharide hydrogel formation for medical and cosmetic applications.

Funded by Formas, the Swedish research council for sustainability. 2020-2023.

Photo by RF._.studio on Pexels.com

Hydrogels are an extremely versatile class of material, and have found relevance in cosmetic, medical, pharmaceutical, and industrial processes. A hydrogel has a low solid content, often comprising at least 90% water. Although hydrogels are increasingly used in cosmetics and drug manufacture, the production process is far from sustainable, relying on fossil-based polymers and chemical synthesis steps, using compounds that are harmful to human health. I have discovered that certain proteins can be used to cross-link polysaccharides (complex carbohydrate polymers), thereby creating a hydrogel network. The process avoids all chemical solvents, and allows us to use renewable biopolymers of natural origin, rather than fossil-based polymers. The polysaccharides we can use derive from biomass processing waste streams, promoting a circular bioeconomy and smart use of resources.

Engineering improved stability and substrate binding into enzymes for efficient hydrolysis of lignocellulosic biomass.

Funded by the Swedish energy agency. 2020-2025.

Photo by Flickr on Pexels.com

The overall aim of this project is to enhance the efficiency of industrial biomass saccharification for biofuel production by designing and engineering new enzymes with enhanced hydrolytic capabilities and high thermostability. In my Vetenskapsrådet-funded Etableringsbidrag (Starter Grant) project, I have discovered a new class of small domains found in some bacterial enzymes, and have demonstrated that they provide a truly significant boost to enzyme thermostability and hydrolytic capacity on complex biomass.

INTENT: INducible TransgENic Technology for disease resistance in plants

Funded by Vetenskapsrådet, the Swedish research council for basic science. 2017-2021.

Photo by Pixabay on Pexels.com

The overall aim of INTENT is to improve crop plant defences against emerging infectious fungal diseases. This multi-disciplinary project will combine biochemistry, molecular biology, and plant pathology. I will design and implement a new method of plant biotechnology where transgene expression for plant defence is induced by the specific fungal glycans encountered in the early stages of pathogen exposure. This will offer greater efficiency and specificity than innate plant defence systems.

In the next phase of my career, I look forward to applying my skills to the challenges of food security, soil conservation, and climate change. With the support of Vetenskapsrådet, my goal with INTENT is to gain autonomy, and begin to establish a competitive new research team. I will create a niche for us to lead in a new area of environmental science. My long-term ambition is to understand the roles of soil bacteria in biomass recycling and plant health, and to be inspired by these species to develop new technologies for sustainable agriculture and forestry, built on a strong foundation of molecular science.

Enzymatic epoxidation of suberin monomers for thermoset production.

Funded by the Wallenberg Wood Science Centre. 2018-2020.

Photo by mali maeder on Pexels.com

The epoxidation of suberin and cutin to increase the content of epoxidised compounds would increase the yield of polymers available for the lipase-based production of thermosetting bioplastics. This would valorise a waste-stream from the wood biorefinery, as bark is always removed from the wood prior to processing. We will characterise newly identified epoxidase enzymes from plants and microorganisms that introduce epoxy groups to long chain fatty acids, and use them to epoxidise the monomers of suberin/cutin. These will be used to make new materials produced without the use of petroleum-derived chemicals, which will therefore represent a sustainable high-value product.

New approaches to the prevention of fungal disease in young trees inspired by beneficial soil bacteria.

Funded by the Anna and Nils Håkansson Foundation. 2017.

Photo by mali maeder on Pexels.com

Soil bacteria produce enzymes that attack the cell walls of pathogenic fungi. I will discover new anti-fungal enzymes for disease prevention in young trees. The enzymes will be applied directly or be incorporated into new bio-active materials. The use of natural soil-bacterial enzymes prevents the introduction of ‘foreign’ proteins to the forest ecosystem and reduces pesticide use. The project will involve gene cloning, protein production, enzyme characterisation, and material chemistry.