Women in Microbiology.

I am not a frequent reader or reviewer of non-fiction. For more regular and more insightful reviews of popular science books, follow the excellent Read More Science blog and Twitter account by Sarah Olson, champion of scientific literacy.

I am an avid reader and a professional scientist, but I very rarely read non-fiction in my free time. I prefer to spend my evenings, weekends, and the daily commute with novels and short story collections. And for some reason, I’ve always had a particularly strong aversion to reading biography, including biographies of people I genuinely admire. The only biographies I really remember reading and enjoying are Bossypants by my hero Tina Fey and We Need to Talk About Alan by my other hero, Alan Partridge.

“The human brain comprises 70% water, which means it’s a similar consistency to tofu. Picture that for a second – a blob of tofu the size and shape of a brain.” –That’s Alan, bringing the kind of insight you just won’t find in many ‘proper’ science books.

Having said that, to expand my horizons I’m now making a concerted effort to read more non-fiction, and particularly to read more popular science books. This is partly inspired by my own tentative attempts at writing popular science, but also by a desire to read more diverse accounts of life in science, to be better able to discuss matters of representation with my students.

Women in Microbiology

I recently completed Women in Microbiology, published by the American Society for Microbiology and edited by Rachel J Whitaker and Hazel A Barton. This is a collection of 34 short biographies of women who have worked within diverse fields of microbiological science over the past 100+ years, each pioneers in their own way. The essays are written by colleagues, friends, fans, and former students.

The microbiology I read for my work tends to lie within a very strict niche, so I had prior knowledge of very few of the women featured in this collection. As I research carbohydrate metabolism by Bacteroidetes bacteria, I was naturally most well acquainted with the work of Abigail A Salyers, the mother of microbiome research (Chapter 27). But I learned a lot from this book about Abigail the person, and all of the other amazing, inspirational women featured. Below is a short list of my favourite insights from Women in Microbiology, a collection I cannot recommend highly enough.

Sallie “Penny” Chisholm writes fun science books for young children

Professor Penny Chisholm researches and teaches on ecology and microbial oceanography at MIT’s Civil & Environmental Engineering department. She is a highly decorated scientist, and she has a passion for opening up scientific investigation to a wide audience. On her lab website, she shares detailed protocols on how to work with tricky Prochlorococcus marine cyanobacteria. But she also is the co-author of a series of children’s books about photosynthesis on land and in the oceans, and about how important the process of harvesting light energy is for all kinds of life on earth. The Sunlight Series, published between 2008 and 2017, is co-written by Penny Chisholm and Molly Bang, who has won several awards for her writing and illustrations.

Everyone has always had imposter syndrome: Diana Downs shows how to fight through it

Professor Diana Downs of the UGA Department of Microbiology studies the interconnectedness of microbial metabolic pathways, work that has implications for metabolic stress and fitness, and which encompasses all aspects of classical microbiology and cutting-edge bioinformatics. Not an easy topic to understand, let alone to master as Diana has. And yet, at the beginning of her career, Diana experienced many of the same doubts that myself and my academic friends are used to feeling. As a student, she made some highly novel observations about Salmonella induction and – because she was new to research – she assumed she must have made a mistake, mis-interpreted her data, gotten the wrong end of the stick. I had an exactly similar experience during my PhD; when a mutation I made to an enzyme introduced a new activity, I assumed that I had contaminated my protein prep with a different enzyme. I repeated the enzyme production and characterisation protocol probably five times before I took my observations to my supervisor. He then taught me to trust in my data, a lesson that Women in Microbiology says Diana has passed to all of her mentees.

According to the book, Diana has the following catchphrase, which I love: “If you do not have time to do it right, how are you going to have time to do it again?” This is a brilliant way to make the case for using deliberate practice in the lab, and taking the time to do things right, which is a lesson many students have to learn the hard way: rushing through a long and boring protocol can easily lead to mistakes, meaning everything has to be re-done anyway. In moments of high pressure or high ambition, we can be our own worst enemies if we try to hurry.

“I always stepped into the only suitable opening I could see on my horizon.” The inevitable success of Alice Catherine Evans

As one academic qualification leads to another, and one project or paper leads to another, it is sometimes easy to feel that one is being pulled through life, after inadvertently setting a course in motion many years before. It might be enough that you choose a particular science subject at A-level, and your high grades carry you in to studying a similar subject at university. Then maybe a lecturer offers you a position as a PhD student, then offers you a job as a post-doc, and before you know it you are on the tenure track somewhere, still studying that same subject you were good at when you were 17. It sometimes feels like we don’t make many active choices, more that we are pushed or pulled by success and failure that is largely dictated by the universal whim. I have felt this way at times over the past few years, and I feel lucky that I was able to stick it out and that I’m currently in a position that I enjoy, and where I feel I am more in control of my professional life.

I was quite deeply moved by the account in Women in Microbiology of the life and work of Alice Catherine Evans, a microbiologist who worked for the US Department of Agriculture (USDA) from 1913. She discovered the link between the bacterium Bacillus abortus and the disease Brucellosis, and she was an early advocate for pasteurisation of milk, making enormously important contributions to food health and safety. She would go on to study influenza and Streptococcal disease, leaving her mark on healthcare as well.

Although the book notes that Alice “never declined an opportunity” it seems that she was rather often carried through life and her career by her innate skills and world events, rather than by making any specific ambitious decisions. After graduating with excellent marks from high school, Alice started to teach, because this was the only profession available to women. When she became intellectually bored she took up the offer of a free two-year course at the College of Agriculture in Cornell, and followed this with an education in Bacteriology, which was also offered tuition-free; at this point in her life, her poverty, rather than her gender, seems to have driven her to microbiology. After excelling yet again in her studies, Alice was offered a bacteriology scholarship at the University of Wisconsin (the first woman to hold one!), and so she found herself a highly educated 29 year old spinster working in bacterial research. This may have been the only path that had presented itself to Alice, but it was a path that would let her build a profoundly impactful scientific and feminist legacy.

After this, Alice returned to the USDA somewhat reluctantly, as it seemed “the only suitable opening,” and she made a big splash when the extant officials learned a lady scientist would be joining them. Alice is quoted as having said “I was on my way, where I had not wanted to go, and where I was not wanted.” Life carries us ever forwards.

Over the coming years, her many important findings on food safety, and especially her data showing that milk should be pasteurised, received a lot of pushback from male scientists and industrialists, but in a way Alice had the last laugh when World War I broke out, and most male scientists were drafted. Alice was swiftly recruited to what would become the National Institute of Health (NIH).

Over the coming years, her ideas about Brucellosis became widely accepted, leading to changes in federal law about the pasteurisation of milk and other food safety regulations. She was feted and decorated many times over the rest of her life, became a board member of several important national microbiological committees, and eventually established a study scholarship through the American Association of University Women, making her one of the earliest and most admirable female icons in the microbiological sciences. Alice believed clearly in gender equality (see the quote the end of this post), even giving lectures on how women should enter male-dominated careers, and she has been an inspiration to generations of ambitious female scientists hoping to make the kind of mark on the world that Alice did. And yet Alice herself appears to have moved very lightly through the world, always taking what felt like the only available path. She was gifted with intelligence and perseverance, and these attributes carried her an awfully long way.

Abigail Salyers, the mother of microbiome research, took her PhD in physics!

This was the chapter I was most looking forward to reading! Since the beginning of my PhD I have been investigating carbohydrate deconstruction by Bacteroidetes bacteria, often in the context of the Polysaccharide Utilisation Loci that Abigail discovered in the form of the archetypal Starch Utilisation System. Professor Abigail Salyers is considered by many to have been the mother of microbiome research – and yet at time of writing she doesn’t have a Wikipedia entry!?! Abigail was a powerhouse of microbiology, and her impact on much of modern microbiology, biochemistry, biotechnology, and biomedical science cannot be overstated. She worked in the very tricky area of anaerobic microbes, developing from scratch protocols to work with non-model microbes that she felt had been neglected for too long. In doing so, she expanded the field of microbiology itself, inspiring people to look and think beyond a few paradigmatic lab freak species. She discovered the pathways that allow our gut symbiotic bacteria to deconstruct and metabolise complex carbohydrates. She discovered mobile genetic elements that are responsible for the sharing of genes encoding carbohydrate degrading enzymes and antibiotic resistance proteins. She was one of the first to worry about the rising spread of anti-microbial resistance, and she was a fierce advocate for microbiology training, education, and public awareness. There is no doubt that she was foundational to the whole field…yet Abigail’s career began with a PhD in physics! In fact, her first academic position was as an assistant professor in physics at a college in Maryland. Just incredible.

Soil specialist Mary Firestone sent back her Truog Award when the certificate mis-gendered her

Professor Mary K Firestone is an expert in soil microbial ecology at UC Berkely’s Department of Environmental Science, Policy, and Management. She had a passion for soil and for science from a very young age, and made her mark despite very limited institutional financial support by studying nitrogen and carbon cycles in the soil and rhizosphere, often using innovate new methods involving radionuclide labelling. In 1979, she was awarded the prestigious Emil Truog Soil Science Award. Touchingly, she had been nominated by her colleagues at Michigan State University where she started her career. Upon receiving the Truog award and certificate, it was noted that the dedication read “To Mary Firestone, for his excellent research in soil science”. The awards committee clearly expected that the winner would always be male! Supported by her advisor and his wife, as well as the rest of the faculty who had nominated Mary for the award in the first place, a complaint was made and a revised certificate was issued. Hopefully the certificate issuers double checked the gender of the award winner every year after this!

My favourite snippets from Women in Microbiology

Professor Michele Swanson, Department of Microbiology & Immunology at the University of Michigan’s Medical School: “You can’t be good at everything.” Take this as permission to give yourself a break!!

Professor Abigail Salyers, president of the American Society for Microbiology, mother of microbiome research, and the first woman granted tenure at the University of Illinois’s Microbiology Department: “I would work to minimise the fragmentation that has occurred within microbiology itself,…especially the rift between…environmental microbiologists and…clinical microbiologists….I believe that if we could forge these two areas into a single cohesive unit, we could become an almost unbeatable force in biology.

Professor Jane Gibson of Cornell University’s Section of Microbiology and one-time editor of the journal Applied & Environmental Microbiology: “No one cares how YOUR mind works.” Jane’s approach to work-life balance was “all work” and “all family” and by this account she sounds absolutely terrifying, but her methods were unquestionably effective.

Alice Catherine Evans, formerly of the US Department of Agriculture: “Women have proved that their mental capacity for scientific achievement is equal to that of men. [But] Women do not receive the same recognition as…men.” Plus ça change.

Professor Katrina J Edwards, formerly of  the University of Southern California: “It’s shocking….In the present day we know much, much more about space and the surface of other planetary bodies than we do about the inner space of our world.

Professor Nicole Dubillier of the Max Planck Institute for Marine Microbiology: “I thought it would be perfect to be a postdoc forever…I never ever wanted to grow up.” #RelatableContent

Emeritus Professor Millicent Goldschmidt, formerly of the Department of Microbiology and Molecular Genetics at the University of Texas: “I fell in love with the idea that as the same time we can’t live them and we can’t live without them.” I also love this awkwardly supportive quotation from Millicent’s uncle, which apparently convinced her father to allow her to go to graduate school: “Even though she’ll be a spinster*, at least she’ll be able to support herself.

*This was apparently guaranteed because, to quote her father, “No man is going to marry a woman with that much education.” Fair play.

Talking hydrogels with Elin Viksten at Extrakt.

Towards the end of 2019 I received the exciting news that a project of mine would be funded by Formas, the Swedish research council that supports work in the broadly defined area of sustainable development. Shortly after receiving the notice of funding, I was contacted by Elin Viksten, a reporter for the Swedish language online magazine Extrakt.se, which publishes popular science articles about new and ongoing research, including many projects supported by Formas.

In Sweden, the summary (Abstract) for every project awarded funding by the national research councils Formas and Vetenskapsrådet must by law be visible online. This is a matter of accountability, as it makes sure the general public can read about the projects they are funding, and can get in touch with the responsible researchers if they wish to. Elin had read the Abstract of my new Formas project when the notice of award was given, and she was intrigued by the work I was proposing. She contacted me in November and we spoke over the phone about my work. This was very exciting for me, as I had never been interviewed about my research before! You can find her full Swedish language article here at this link. What follows is a condensed English translation of the article, paraphrasing the original, including quotes from my own answers to Elin’s questions.

New protein can change the cosmetic and pharmaceutical industries.

They are ideal for moisturising and wound dressing, among other applications. Hydrogels have desirable properties for both the beauty and pharmaceutical industries. But their manufacturer requires harmful chemicals and non-renewable polymers. Now chemistry researcher Lauren McKee may have found a protein that can completely change production – in the pine forest.

Moisturising face masks, including sheet masks, have become a popular form of skin care. The moisturising component is a hydrogel material, which has also proved very useful in wound dressings. But most hydrogels are not produced in sustainable ways.

“Hydrogel effectively moisturises the skin as it contains 95 percent water. It’s a popular material, but I don’t think people generally know what it is and how it works. It can be daunting to look at the long list of ingredients on some cosmetics,” says Lauren McKee, researcher in biochemistry at the Royal Institute of Technology, KTH.

Toxic chemicals

The problem is that production today either involves non-renewable petroleum-based polymers or chemical modifications with hazardous chemicals. A hydrogel is always formed from a polymer that binds water in a three-dimensional structure that can also contain bio-active molecules with cosmetic or medical applications.

Often sodium polyacrylate, polyvinyl acetate, and similar petroleum-based polymers are used. However, because they are not sustainable, they are not ideal starting materials. So, carbohydrate biopolymers have begun to be used. The problem with using carbohydrates is that chemical modifications are required to get the 3D structures you are looking for.

“In this process, you get large amounts of chemical waste and the end product can also contain unwanted molecules. Borax, for example, is not an ingredient in the hydrogel, but is used in preparation. And it’s hard to get rid of all of these molecules once the hydrogel has formed,” says Lauren McKee.

Proteins discovered in the soil

This is where Lauren McKee’s discovery comes into play. She is a researcher in biochemistry and is mainly focused on natural microbial processes in the soil, such as the proteins and enzymes that affect biodegradation processes. It was also there, in the pine forest’s top soil, that she found entirely new proteins. They can be used to make hydrogel in a sustainable way. She accidentally discovered this function of the proteins in the laboratory and now she collaborates with researchers focused on materials research, quite far from her own research area.

“This is a whole new concept. Nobody has understood that these proteins can be used in this way. That is exciting to say the least.”

Produced by bacteria

What Lauren McKee found was proteins with the ability to cross-link natural carbohydrates to form the 3D structures that are so good at binding water – without the harmful chemicals used today. So far, she has explored two of the proteins and their ability to form hydrogels. The proteins are produced naturally by bacteria found in the soil, but they can also be produced easily in the laboratory.

“After that we mix a carbohydrate with the protein in a water solution – and that’s all. It sounds too easy, and it is a very simple process. The proteins and carbohydrates interact in the same way as they do in nature, what we call biomimicry.”

Must have long durability

The challenges ahead include, among other things, obtaining hydrogel with a sufficiently long shelf life. All components are naturally occurring molecules and for hydrogel to be used in cosmetic products, a minimum durability of 6-12 months is required.

“We need to make sure the gel is stable and resists microbial growth, but it is also important that it is allergy-proof. Since we are using proteins we have to be very careful about application to humans, so we need to test for every possible reaction.”

The few proteins of this type that have been observed previously have not shown this gel-forming property and Lauren McKee is the first to see this use. She believes that the soil is a very underrated environment for finding new enzymes and proteins.

“A lot of resources are invested in research on the human gut and its bacteria. But there is an equal or even greater species richness and as many enzymes in the soil.”

Translated from an original Swedish text by Elin Viksten of Extrakt.se

So that was 2019.

I started this webpage in September 2019, so this will be my first ‘year in review’ post. Hopefully I can keep doing something similar in the years to come. But how to summarise a year of one’s professional life? And how much personal detail to discuss here, on what is ostensibly a science/work-focussed site? For a number of reasons, the personal and professional are strongly intertwined for me, defining and often directing each other. By all professional metrics – as I will discuss below – 2019 has been a banner year for me. I’ve worked harder than ever, I’ve achieved a lot, and I’m feeling genuinely hopeful for a fantastic year in research ahead. But this year followed the worst year of my life. I want to use this introduction to put my 2019 into context, context that would never be apparent from a simple list of accomplishments.

2018 for me was a wasteland. Let me start from the beginning. The day before Christmas Eve 2017, my paternal grandfather passed away. He was in his late-80s, and had been ill for a long time. He suffered from a range of health problems relating to miner’s lung, including severe asthma and emphysema. He lived at least ten years longer than doctors expected him to. So while it was obviously very sad to lose him – especially at Christmas time – it felt right, like things were happening in their natural order.

My grandfather’s death started a small existential panic for me, as he was my last surviving grandparent. This made my parents the oldest generation in my family. I am an only child, and neither of my parents have siblings either, so the family suddenly felt incredibly small, and I started to realise that within the next few years I would need to think very seriously about moving back to the UK to be closer to them when they were eventually old enough to need my help.

Unbelievably – and I mean that in the literal sense that I still struggle to believe that this really occurred – my Dad died on January 10th 2018. He was 66 years old, and he died three weeks after his 88 year-old father who had been unwell for years. My Dad was healthy, fit, and he took good care of himself. In fact, he was out on one of his weekly 8-mile walks in the wilds of Northumberland when it happened. He had had a routine cardiac check-up a couple of months earlier and was given a clean bill of health. But there was a sneaky clot hiding somewhere close by his heart, undetectable, and causing none of the classic warning symptoms such as dizziness, chest pain, shortness of breath, etc. One day the clot moved, and that was that.

My father was my everything. My whole world. I am finding the grieving process to be a very slow and heavy thing, and I am certainly not able to write about that yet. I mention this enormous loss here in this post on career achievements only because of the unpredictable effects it has had on my work. Most of 2018 is a blur for me, there are big gaps in my memory of the period, and my CV for that year is pretty thin. I achieved very little of note because I could barely concentrate. I didn’t publish much, I got no new grants, I didn’t supervise any of my own students. I was completely adrift in the world, and felt that nothing I did or said mattered in the slightest. When 2019 began, I can now with hindsight see that there was a marked shift in my behaviour. I didn’t make any conscious decision to change, but I started to work harder than ever before. And the result has been an extraordinary year, that will lead into an even more productive 2020. I’m immensely proud of what I accomplished this past year, but I’d give it all away in a heartbeat, if… .

Photo taken in 1985, the year I was born. My Dad the polymer coatings chemist is 34 years old in this picture, the same age I am as I write this caption. He is the handsome, smiling, dark-haired chap with the moustache and the brown tie, far right in the front row. My Dad worked in the research labs at Courtaulds, which became International Paints, which in turn is now part of the Akzo Nobel chemical empire. Dad developed new paint and coating technologies for ships, and was a key part of the team that developed InterPrime 198, which has sold over 75 million litres around the world.

2019: What have I done?

Popular* science writing

*’Popular’ in this case meaning for the general population, not necessarily meaning well liked.

Ever since university, I have “wanted to write”, whatever that means. As much as I love scientific research, I think my ideal would be to write all day every day. But I never had the guts to really give it a go until 2019, when I suppose I needed new challenges to keep me distracted from the aforementioned personal shit. In spring 2019 I jumped into the world of #scicomm by joining the scientific consortium over at Massive Science, and I am delighted to have now published 4 full-length articles and 4 shorter lab notes with them! It has been a lot of fun, and I’ve written about everything from environmental policy, to science communication tools, advances in medical biotechnology, and new biotech products that are already on the market. My most widely read and shared article for Massive Science was a short biography of the 17th century ecologist Maria Sibylla Merian, who turns out to have a pretty complex legacy. The piece that I found most fun to write was this one about cat arseholes. I never expected to use the phrase ‘anal sac’ in my career, but here we are.

Later in the year, as I felt more confident in my non-academic science writing (Thanks Massive!), I started to pitch ideas to other outlets. I intend to do this a lot more often in 2020, but so far I have published one piece in the Last Retort pages of Chemistry World, a periodical for the Royal Society of Chemistry. The article shows off about how we run our lab at KTH, where we strive to make sure everyone contributes a fair share to general upkeep efforts.

Of course I also started this webpage in 2019. I’m still not sure that I’ll use the blog feature very often, but I am certainly finding it useful to have this easily editable website to collect information about myself. Already a few people have written to me after finding this site to enquire about future collaboration or upcoming recruitment drives.

Academic writing

This year I have written three extensive reviews or book chapters on various subjects, two of which are now published and one that I expect to be submitted in early 2020 (pending contributions from co-authors…..project deadlines are so much easier to meet when I am the only person involved in the frickin project). I’m working on a few research articles that I also hope to submit early 2020, but it’s been nice this year to focus on deep dives into topics I’m passionate about – soil microbes (mostly bacteria), how and why they produce biomass-degrading enzymes, and how we can use those enzymes in industrial biotechnology. My plan is to write a short blog post about each of these reviews in the next few weeks, so stay tuned.

As always, if I publish an article in a scientific journal that you don’t have subscription access to, and you’d like to read my article, get in touch via email, Twitter, or ResearchGate, and I’m happy to share.

Teaching and supervision

An area of academic work that I really dove into this year was education. I am currently a lecturer on five master’s level courses at KTH and one at Stockholm University. Lectures at KTH are two-hour sessions where I teach for two 45 minute sessions, with a break in between. It takes me probably 4-5 days to prepare a new lecture from scratch, and I’ve delivered 12 new lectures this year. So you can see how long I’ve spent on teaching and class preparation. This is in addition to having two full-time master’s thesis students with me in the spring, three summer interns, and another master’s thesis student who started in September.

Although it has taken a huge amount of work, I’ve found my teaching this year to be incredibly rewarding. By contributing to a number of different courses on the KTH biotech master’s programmes, I’ve gotten to know a group of 15-20 students pretty well, and in fact 4 of them have asked me to supervise their master’s theses next year. (Actually 6 of them asked me, but I felt that would be too many students to supervise with care.) It is a great feeling to know that these students trust me and like me and my research topic well enough to want to spend half a year working with me!

The large amount of teaching and supervision I completed in 2019 has allowed me to apply for Docentship at KTH, and that application is progressing nicely. I will write a blog post about what Docentship means and how it is acquired in the new year, after I am interviewed by teachers and students about my pedagogic practice – eep!

Scientific research

Check out the page Research Projects for info on my current research interests and goals, and some relevant academic publications. My main focus this year has been bacterial, with members of the group looking at Bacillus and Chitinophaga as plant-protectors and biomass-degraders. Lots of data generated this year, and I can’t wait to share it all with you in 2020! I’m hoping for several research publications and a couple of conference presentations to showcase our work.

Something I’m especially proud of with my current projects and upcoming publications is how student-led my research is. I have had the great fortune of recruiting some truly exceptional research students into my group this year, most notably Anna and Zijia. They are both extremely hard-working young women, keen to learn new techniques, excited by research results, and dedicated to precision and reproducibility in their work. I feel privileged to have been able to supervise two such promising young scientists, and I hope I do their work justice in upcoming publications.

I had a run of great financial news at the end of the year, when I learned I’d been awarded two fairly substantial research grants from national councils in Sweden. This new money, coming in over the next 5 years, will let me work independently on topics I’m passionate about, and I’ll be able to recruit post-docs to get two exciting new projects started. I can’t wait!

What else?

According to GoodReads, I’ve read 54 books this year. According to Criticker, I’ve seen 92 movies. I’ve watched probably 100+ hours of YouTube, and I’ve also re-watched all seasons of Brooklyn 99, Green Wing, and Archer. I’ve tried my hand at pickling a dozen types of vegetable, and I got my hair dyed blonde for the first (and last) time. It’s almost like I’m trying to distract myself from something, who knows. Anyway, see you next year!

Walking by the River Tyne on a Christmas visit home, end of 2019. My Dad used to walk along the river a couple of times a week, and he knew all the best blackberry picking spots. Wow, I miss him.

Ten year anniversary of an epic road trip – Athens GA to the Trinity testing site, NM.

My career in science has let me visit and live in places I never expected to. While I was a PhD student, I got the chance to work at the famous Complex Carbohydrate Research Centre (CCRC) at the University of Georgia in Athens, GA. Go Dawgs!

Before moving to Athens I’d never even visited the US, and it was a real culture shock. The weather, the people, and the whole lifestyle were so very different from back home. One thing that helped a lot was that I was one of four PhD students who went over there together. This meant I could share an apartment with people from back home – although it was sometimes tough living and working with the same few people!!

To fully take advantage of our time in America, we decided to take a couple of big road trips, journeys far longer than could ever be driven back home in the UK. Almost exactly ten years ago, in October 2009, a friend and I drove from Athens, GA all the way to New Mexico to visit something very special.

The approximate route of our road trip, heading west along the I-20 then back east along the I-10. We made several overnight stops in motels along the way, not always certain what town we were in. Image made using Google Maps.

My friend had discovered that the White Sands missile testing ground, where the very first atomic bomb was built and tested on the Trinity site, is open to visitors on two days of the year. This is because radiation levels are now low enough that a visit every six months is safe, but no more than that. We couldn’t resist going there to see the bomb site and the lab where the bomb was built, but we had a hell of a drive ahead of us.

We made a route plan, packed a bag each, and got on the road at about 6 p.m. after a long day in the lab. We decided we would just look for motels along the way when we got tired, and we would share the driving as close to 50-50 as possible (although I think I did a bit less). Apart from our final destination – White Sands missile testing range in New Mexico – I don’t remember us having many specific destinations in mind. It was such a freeing feeling.

We stopped at some amazing towns and cities along the way, each with its own unique nature. Our first major stop was Dallas, which dazzled me with architecture and political history. Soon after came Roswell, a very small town carrying a huge weight of strangeness. Alien eyes on every lamppost – perfect!

We stopped at two places in New Mexico that we had not previously heard of. Lincoln, NM is a tiny unincorporated village with fewer than 200 residents, but it contains the courthouse where the infamous outlaw Billy the Kid killed deputy Bob Ollinger, his final victim. Truth or Consequences, NM is another small town famous for a very different reason – it renamed itself in order to win a radio prize in 1950! Where else but the USA.

The main event of our trip was of course the Trinity testing site at White Sands. We got to see the bomb site, and the big crater left behind where you can still see tiny shards of green glass that were formed in the heat of the explosion. The glass was named Trinitite and it is forbidden to remove any from the site. We also went inside the “lab” building where the bomb was built. In reality, this was a tiny residential shack where the windows had been covered with plastic to keep the dust out. Hardly what we’d now call sterile conditions!

After Trinity, we had a long journey home ahead of us. We had dinner in San Antonio, and visited the Alamo the afternoon we were there. We just had time for a couple of hours in Texas and New Orleans, before getting back to Athens and back to our lab work!

The visit to Trinity was incredible. Getting to see where something so scientifically impressive yet socially devastating was a really unique experience. But what sticks with me the most to this day is the feeling of space out on the road. For hours at a time we would drive in a straight line with nothing visible ahead or behind us. Nothing I’ve experienced since has come close to that feeling.

New publication! An enzymatic method to produce nanocellulose from softwood chips.

Nanocellulose is an amazing natural material. It is produced by taking cellulose – found in wood, paper, cotton, and so on – and disintegrating it into nanoparticles. These can be used to make paper, films, and gels. They can be assembled into super-strong fibres, or blended with other biomaterials to increase strength and reduce production costs. And because they are made from natural plant biomass, they can be considered a quite sustainable product, since they are derived from renewable resources.

The use of nanocellulose is particularly advanced in Japan, where you can find it in pen ink, some clothing, and footwear. It is very lightweight and also very strong, so it is ideal for these applications. Exploitation is not so advanced in Europe, but companies like Cellutech are developing cellulose-based packaging materials and even a bicycle helmet.

Although the material is produced from environmentally responsible renewable resources, the typical methods for disintegrating cellulose into nanocellulose involve a lot of quite nasty chemicals. Sulphuric acid and a chemical called TEMPO are used, which generates a lot of chemical waste. Sustainable industrial development requires us to minimise the production of waste at all levels, and to find alternatives to chemicals that can damage health or the environment.

This is why many researchers, like a team at KTH Division of Glycoscience, are keen on developing enzyme-catalysed nanocellulose production. Enzymes work at moderate pH and temperature conditions, and no harsh chemicals are used in the enzyme reaction, so the ecological footprint of nanocellulose production can be greatly improved.

This new paper is the first PhD publication for doctoral student Salla Koskela. I co-supervise Salla at KTH in Stockholm, helping her to optimise protein production and enzyme assay protocols. Her main supervisor is Prof Qi Zhou, an expert in biomaterials based on natural polymers like cellulose and chitin. Another of Qi’s students, Shennan Wang, was also instrumental in this work thanks to his ability to characterise biomaterials.

In this work, Salla and Shennan showed that we can take one enzyme – belonging to the class called Lytic Polysaccharide Monooxygenases, or LPMOs – and convert spruce wood into nanocellulose fibres. The wood is first chemically treated to remove lignin and form large cellulose fibres. Then, Salla’s enzyme chops those down to nanofibres. The nanocellulose fibres can be formed into nanopaper, which Shennan can investigate for strength and toughness.

One of the people who peer-reviewed this article before it was published praised our nanocellulose production process for being quite easy (it has relatively few processing steps), and having a high yield of nanocellulose production. These are crucial factors to consider if enzymatic nanocellulose production is ever to be implemented at large commercial scale.

Ours is not the first report of an enzyme being used to make nanocellulose, but we were pleased to be able to achieve a highly detailed characterisation of our final material, including producing nanopapers with high strength. We also believe that we are among the first to produce such thin nanofibres of cellulose – ultra-fine nanocellulose can confer higher strength than slightly thicker fibres.

You can read the paper now at Green Chemistry.

Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Koskela S, Wang S, Xu D, Yang X, Li K, Berglund L, McKee LS, Bulone V, and Zhou Q. Green Chem., 2019,21, 5924-5933

One week of seclusion in the forests of Norrland.

Image adapted from Norrland Wikipedia page under CC BY-SA 2.5 .

My adopted hometown of Stockholm is in the southern half of Sweden, in the region called Svealand. It’s easy for me to forget just how much more of Sweden there is to the north of me than to the south. You can go up on the map a lot further than I have had the chance to explore.

I was invited to teach this August at a summer school for PhD students on the topic of the Wood Materials Biorefinery, focussing on how enzymes can be used to fractionate wood and add value to its molecular components. The school was organised by the Wallenberg Wood Science Centre (WWSC) and Treesearch. I immediately accepted the invitation when I learned that the school was taking place in Örnsköldsvik, a small picturesque town in Norrland, the northern half of Sweden.

My fellow teachers on the course were colleagues with whom I had been trying to write a collaborative review article for at least a year. We had struggled to get our schedules to match up, and belonging to two different universities in Stockholm and Gothenburg made it hard to meet up for discussions.

So we decided to extend our stay in Övik (as it is affectionately called) and turn it into a writers’ retreat. We would buy a week’s worth of food, hole up in a house somewhere, and just work solidly on the article for a week. We wanted to isolate ourselves from all of the usual work tasks that keep an academic from sitting down and writing productively.

We looked for a house on Airbnb that was within 30 minutes of Övik train station and the site of the summer school – close but not too close to civilisation and our teaching appointments. A peaceful location was our primary goal, and we found a big house in the forest, just five minutes’ walk from a beach! The house we booked was big enough that we could work collaboratively on the big kitchen table, and also retreat to separate working areas when we needed space. It sounded too good to be true. (Spoiler alert – it was exactly as good as it had sounded!)

Our house in Örnsköldsvik, at the top of a short bank leading directly up from the sea.

My week began with a 6 a.m. train from Stockholm to Övik, a 6 hour journey made bearable by a free breakfast, sea views, and short science fiction stories on my Kobo e-reader. On arrival, I met up with my colleagues in central Övik, and we bought groceries for the week. Not the most efficient or well-planned food shop – we bought 4 litres of milk for 3 people for 1 week – but we definitely wouldn’t starve during our stay.

One of the major industries around Övik is pulp and paper production, which is why the WWSC students were in the area. Their week included a visit to a nearby paper mill. In Övik, when the wind is right, one can sometimes smell the sulphurous emissions from the paper plant – but this does nothing to spoil the beauty of the town, which sits just on the water. Övik is part of the Höga kusten (High coast) area of Sweden beloved by tourists, and the town sits on a natural harbour at the beginning of an archipelago that feeds into the Gulf of Bothnia.

The beach by our house in Örnsköldsvik. The forest comes all the way down to the water.

Life by the sea is not so novel to me. I grew up in North-East England and have many friends who live in the seaside town of South Shields. But the rest of the Övik landscape did surprise me. As we drove out of town towards the house we’d be staying in, we entered a dense forest that extended really close to the shoreline. Our house was deep in the forest but only a five minute walk down the bank and you were on a sandy beach. Having large trees growing so close to the sea felt odd to me.

When we swam in the sea on our first afternoon I realised that the water was not at all salty, unlike the North Sea that washes in at South Shields. Only hardy grasses can grow on the sand dunes back home, due to the high salt content of the soil and in the air.

Tea on the veranda, a productivity tool I endorse.

Life in the house was quite idyllic. Every day I would eat breakfast on the veranda, then work on my writing solidly for 5-6 hours. With none of the distractions that come from the office, the corridor, and the lab, I was free to be absolutely focussed on the task at hand, and I have never been so productive.

When I wrote my PhD thesis, I would sit and write for 10-12 hours per day, but I was so tired that a lot of what I put on the page was garbage and had to be re-done the next day. The time in Övik was truly productive – I made a lot of good work, and by the end of the week our collaborative review article was almost complete.

After writing for those intense hours, I’d walk down to the beach and sit or lie in the sun. I’d swim on sunny days, or wet my feet on windy days. Then stroll back up the hill for dinner and evening discussions with my colleagues about our progress and our plans for tomorrow.

One whole week with only one thing to do was blissful, and it led to some great writing. It’s unlikely I’ll get to do anything similar for a long time, because of teaching, student supervision, lab work, committee meetings, and conference attendance. But I am planning to organise one-day writing retreats with colleagues for future collaborative articles.

The ability to focus on one important task is a gift to anyone with multiple responsibilities, so grab the chance if you get one.